Friday, May 24, 2019

Huge new wind turbines

From Vox:

The declining price of solar power gets more press, but there are big things happening in wind technology too. And I mean big.

The math on wind turbines is pretty simple: Bigger is better. Specifically, there are two ways to produce more power from the wind in a given area.

The first is with bigger rotors and blades to cover a wider area. That increases the capacity of the turbine, i.e., its total potential production.

The second is to get the blades up higher into the atmosphere, where the wind blows more steadily. That increases the turbine’s “capacity factor,” i.e., the amount of power it actually produces relative to its total potential (or more colloquially: how often it runs).

The history of wind power development has been the history of engineering taller and taller turbines with bigger and bigger blades. It’s a tricky and delicate business. Tall, skinny things, placed in higher winds, tend to bend and flex. When long turbine blades bend, they can crash into the tower, or hub.

So the third engineering challenge is to find designs and materials that can stand up to the stresses that come along with height and higher winds. Those stresses get quite intense — check out this video of engineers testing an enormous turbine blade by pulling it to and fro with “the weight of approximately 16 African elephants.”




Anyway, making turbines bigger and bigger is the name of the game. When it comes to land-based (onshore) turbines, that process begins to run into various non-technical limitations — transportation and infrastructure chokepoints, land use concerns, worries about views, large birds, shadows, etc.

But especially in Europe, wind power is increasingly moving out to sea. And out in the ocean, with land barely in sight, the only limitation on size is engineering. Consequently, offshore turbines today are vaulting up even faster than onshore turbines have over the past decade.

 Bigger turbines harvest more energy, more steadily; the bigger they get, the less variable and more reliable they get, and the easier they are to integrate into the grid.


[Read more here]


No comments:

Post a Comment