Thursday, April 9, 2020

Living on Mars -- VI

Exploration of Valles Marineris by Sean Brady (2009)
Via HumanMars


These excerpts are from a fascinating piece by Robert Zubrin in National Review.

He who follows Freedom, let him leave his homeland, and risk his life.— Adam Mickiewicz, Polish poet, 1832
I have known Musk for some two decades now. In 2001, I was among those who helped convince him to make Mars his calling. His plan is based to a significant degree on my own work, which is generally known as the Mars Direct plan. Published in 1990 and elaborated in detail in 1996 in my book The Case for Mars, Mars Direct was a radical break with previous NASA thinking on how human Mars missions might be accomplished. But Musk’s Starship plan is far more radical still.

With the exception of a period in the 1990s when NASA, under the guidance of Mike Griffin, the associate administrator for exploration, did embrace an expanded version of Mars Direct, the space agency has stuck with a paradigm set forth by Wernher von Braun in a number of variations between 1948 and 1969. According to those ideas, orbital stations should first be built, providing platforms for on-orbit construction of giant interplanetary spaceships using advanced propulsion systems, which would travel from Earth orbit (or currently, rather more absurdly, lunar orbit) to Mars orbit. Departing from these orbital motherships, small landing craft could take crews down to the Martian surface to plant the flag, make a few footprints, and then return to orbit after a short stay.

In contrast, both Mars Direct and the Starship plan use direct flights from Earth orbit to the surface of Mars, with direct return from the surface to Earth using methane/oxygen propellant made on the Red Planet from local materials. Both plans shun any need for orbital infrastructure, orbital construction, interplanetary motherships, specialized small landing craft, or advanced propulsion. Both involve long duration stays on Mars from the very first mission. For both, the central purpose of the mission is not to fly to Mars but to accomplish something serious there.

Musk’s plan offers more mission capability than Mars Direct does, but that capability comes with a price. Specifically, if the crew is to come back, you need to refuel a Starship, which needs about 1,000 tons of propellant. In the Mars Direct plan, the much more modest earth-return vehicle sent to the Red Planet in advance of the crew requires only 100 tons. The Mars surface-power and other base requirements needed to support Starship operations are a factor of ten higher than those needed to implement Mars Direct.

So a large base needs to be built in advance, with several Starships sent one-way to Mars and loaded with lots of base equipment, ten football fields’ worth of solar panels, and robots to set it all up. Not until all that is in place can the first crew carrying Starship arrive. That makes the system suboptimal for exploration. But exploration is not what Musk has in mind.

If Mars Direct may be likened to an evolvable version of the Apollo program, Musk’s plan is like D-Day. He needs a fleet. So he’s creating a shipyard to build a fleet. But why build a fleet before testing even one ship? There are several reasons. The first is that Musk wants to be prepared to take losses. By the time the first Starship is ready for its maiden test flight, he’ll have three or four more already built and on deck, ready to be modified to fix whatever caused the first to fail. Launch, crash, fix, and repeat, until it works, and then keep launching, improving payload and cutting turnaround time, advancing performance, flight by flight, ferociously. [This is one of the best summaries of Musk's process, and it is one of the reasons why I (NPT) am not worried about the three partially-built Starships which have been turned to scrap during the testing so far.]

But there is another reason to build a fleet. It’s to make Starships cheap. NASA built five space shuttles over a twelve-year period, each one costing several billion dollars. Musk is creating a shipyard designed to ultimately mass-produce Starships at a rate of 50 or more per year. That may sound crazy, but it is not impossible. In 1944, the United States produced escort aircraft carriers at a rate of one per week. Scores of separate teams worked simultaneously, each on its own part of the ship for a few days before passing the job on to the next team. If Musk set up a similar line with a workforce of 3,000, that would mean labor costs on the order of $6 million per ship, or between $15 to $20 million each, with materials and avionics included. [Musk himself has stated that he could build each Starship for $5 million]

If he can get costs that low, then once the base on Mars is operational, with a growing industrial and greenhouse agricultural capacity, Starships carrying 100 passengers each could fly to Mars and stay there if necessary to provide housing, at a hardware cost per passenger of less than $200,000. So make the ticket price $300,000 — the net worth of a typical homeowner, or about seven years’ pay for an average American. In colonial times, working stiffs booked passage to America in exchange for seven years’ work. It’s a price many people can pay — and have paid — when they really want to make a move. All that is needed besides is Liberty to welcome the immigrants — if she is there, they will come, and prosper through their creativity.

On this latter point, Musk and I agree. An extraterrestrial settlement is unlikely to be able to produce a profit by export of any material commodity to Earth. The transport costs are simply too great, and so the numbers in business plans based on such concepts just don’t add up.  But intellectual property is another matter altogether, as it can be transmitted across interplanetary distances nearly cost-free. Bit for bit, the highest value any data can have is that contained in a patent. A Mars colony will be composed of a very technically adept population in a frontier environment where they will be free to innovate and forced to innovate.  It will be like 19th-century America, only much more so, a pressure cooker for invention. As historian Frederick Jackson Turner pointed out in his famous essay “The Significance of the Frontier in American History” (1893), an analogous situation made youthful America the most inventive culture ever, with Yankee Ingenuity bringing the world the blessings of electricity, steamboats, telegraphs, labor-saving machinery, recorded sound, light bulbs, telephones, centrally generated electric power — and shortly after he wrote, airplanes and mass-produced automobiles. So, to meet its needs, hard-driven and bureaucracy-free Martian Ingenuity can be expected to produce revolutionary advances in robotics, artificial intelligence, genetically modified organisms, synthetic biology, and many other fields. These inventions, created to meet the necessities of Mars, could be licensed as patents on Earth, bringing in the income needed to fund those imports of complex systems, which unlike bulk materials like food, fabric, fuel, steel, aluminum, glass, and plastic, may be too difficult to make on Mars for some time to come.


[Read more here]

You might also like:

Living on Mars -- I

Living on Mars -- II


Living on Mars - V







No comments:

Post a Comment