We've talked about solar in Alaska. And Canada. And Denmark. How about solar in Antarctica?
From PV Magazine:
A 30 kW vertical array has been powered up at Australia’s Casey research station in Antarctica. The project is one the largest solar installations on the ice-covered continent.
The 105-panel array, mounted on the northern wall of Australia’s Casey Station, will provide about 10% of the facility’s total electricity demand per year and reduce its reliance on diesel generators.
“It will cut fuel costs and emissions, as well as boost the station’s capacity in peak periods,” said Australian Antarctic Division Director, Kim Ellis.
The project is a collaboration between the Australian Antarctic Division and Abu Dhabi-based Masdar. The two sides will investigate a range of efficiency and energy-management options at Australia’s Antarctic stations.
“This project will help to build expertise in, and the performance of, solar systems in cold and remote environments,” said Mohamed Jameel Al Ramahi, chief executive officer of Masdar. “It will test the durability and suitability of the solar panels to the strong wind and snow load in Antarctica and help us to determine if it is an efficient way of powering a station.”
The installation process saw the brackets and rails installed first to hold the panels flush against the wall. The next step was to install external cable ducting, internal cable trays, a switchboard and three inverters to convert the variable direct current into 240-volt alternating current.
During the installation process, the team worked in temperatures as low as -7°C, as well as a number of blizzards. “The cold was a challenge, as the brackets and bolts are small and fiddly and can’t be installed while wearing gloves, so we had to use hand warmers to keep our fingers nimble,” said Doreen McCurdy, engineering services supervisor at Casey Station.
“On windy days we had to focus on the internal installation, as the elevated work platform we use outside can’t operate in winds above 15 knots. Once all the rails and brackets were in place, though, we were able to install about 15 panels a day.”
While the panel installation is unusual in its flush mounting against the wall, it has been designed to strike a balance between maximum solar gain and stability in the wind, while ensuring that the panels are easy to install, access and maintain.
“Back in the real world, the sun typically goes overhead. Down here at the very low latitudes in the southern hemisphere, the sun typically doesn’t get much above the horizon, so the wall of the building gets more sunshine than the roof of the building,” explains Mark Pekin, an infrastructure engineer.
[Read more here]
As is the case with Alaska, even though solar only works for part of the year, it is still cheaper than using diesel, which has to be expensively transported to these remote locations. In places with more sun, solar is now cheaper than (new) coal and in some places than gas. Combined with wind, it can produce close to baseload output, minimising storage needs. Even in locations as far from the equator as Denmark and Norway, the stronger winds of winter offset the reduced insolation.
No comments:
Post a Comment